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ABSTRACT

Computational analysis of the rhythmic/metrical structure
of music from recorded audio is a hot research topic in
music information retrieval. Recent research has explored
the explicit modeling of characteristic rhythmic patterns as
a way to improve upon existing beat-tracking algorithms,
which typically fail on dealing with syncopated or poly-
rhythmic music. This work takes the Uruguayan Candombe
drumming (an afro-rooted rhythm from Latin America) as
a case study. After analyzing the aspects that make this
music genre troublesome for usual algorithmic approaches
and describing its basic rhythmic patterns, the paper pro-
poses a supervised scheme for rhythmic pattern tracking
that aims at finding the metric structure from a Candombe
recording, including beat and downbeat phases. Then it
evaluates and compares the performance of the method
with those of general-purpose beat-tracking algorithms
through a set of experiments involving a database of an-
notated recordings totaling over two hours of audio. The
results of this work reinforce the advantages of tracking
rhythmic patterns (possibly learned from annotated music)
when it comes to automatically following complex rhythms.
A software implementation of the proposal as well as the
annotated database utilized are available to the research
community with the publication of this paper.

1. INTRODUCTION

Meter plays an essential role in our perceptual organiza-
tion of music. In modern music theory, metrical structure
is described as a regular pattern of points in time (beats),
hierarchically organized in metrical levels of alternating
strong and weak beats [15, 16]. The metrical structure
itself is not present in the audio signal, but is rather in-
ferred by the listener through a complex cognitive process.
Therefore, a computational system for metrical analysis
from audio signals must, explicit or implicitly, make im-
portant cognitive assumptions. A current cognitive model
proposes that, given a temporal distribution of events, a

c
� Leonardo Nunes, Martı́n Rocamora, Luis Jure, Luiz W.

P. Biscainho. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Leonardo Nunes, Martı́n
Rocamora, Luis Jure, Luiz W. P. Biscainho. “Beat and Downbeat Track-
ing Based on Rhythmic Patterns Applied to the Uruguayan Candombe
Drumming”, 16th International Society for Music Information Retrieval
Conference, 2015.

competent listener infers the appropriate metrical structure
by applying two sets of rules: Metrical Well-Formedness
Rules (MWFR), which define the set of possible metrical
structures, and Metrical Preference Rules (MPR), which
model the criteria by which the listener chooses the most
stable metrical structure for a given temporal distribution
of events [15]. While not strictly universal, most of the
MWFR apply for a variety of metric musics of different
cultures [23]; MPR, on the other hand, are more subjective
and, above all, style-specific. A listener not familiar with
a certain type of music may not be able to decode it prop-
erly, if its conventions differ substantially from usual tonal
metrical structures.

This is why the computational analysis of rhythmic/met-
rical structure of music from audio signals remains a dif-
ficult task. Most generic algorithms follow a bottom-up
approach with little prior knowledge of the music under
analysis [6,7,13], often including some kind of preference
rules—e.g. by aligning beats with onsets of stronger and/or
longer events [15]. Therefore, they usually fail on process-
ing syncopated or polyrhythmic music, for instance, that
of certain Turkish, Indian or African traditions [22].

For this reason, other approaches prefer a top-down pro-
cess guided by high-level information, such as style-specific
characteristics [11]. Given that listeners tend to group mu-
sical events into recurrent rhythmic patterns which give
cues for temporal synchronization, the explicit modeling
of rhythmic patterns has recently been proposed as a way
to improve upon existing beat-tracking algorithms [14, 24,
25]. The identification of challenging music styles and the
development of sytle-specific algorithms for meter analy-
sis and beat-tracking is a promising direction of research
to overcome the limitations of existing techniques.

In this work, an afro-rooted rhythm is considered as a
case of study: the Candombe drumming in Uruguay. Moti-
vated by the fact that some characteristics of Candombe are
challenging for most of the existing rhythm analysis algo-
rithms, a supervised scheme for rhythmic pattern tracking
is proposed, aiming at finding the metric structure from an
audio signal, including the phase of beats and downbeats.
The performance of the proposed method is assessed over
a database of recordings annotated by an expert.

The next section provides a brief description of the Can-
dombe rhythm. Then, the proposed method for rhythmic
pattern matching is presented in Section 3. Experiments
and results are described in Section 4. The paper ends with
some critical discussion and directions for future research.
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2. AFRO-URUGUAYAN CANDOMBE

2.1 Candombe drumming in context

Candombe is one of the most characteristic features of Uru-
guayan popular culture, practiced by thousands of people.
Its rhythm influenced and was incorporated into various
genres of popular music. However, little known abroad, it
may be difficult to understand for unfamiliar listeners.

Although originated in Uruguay, Candombe has its roots
in the culture brought by the African slaves in the 18th cen-
tury. It evolved during a long historical process, gradually
integrating European immigrants and now permeating the
whole society [1, 8]. Candombe drumming, with its dis-
tinctive rhythm, is the essential component of this tradi-
tion. Its most characteristic manifestation is the llamada
de tambores, a drum-call parade, when groups of players
meet at specific points in the city to play while marching
on the street (Figure 1).

Figure 1. Group of Candombe drummers.

The instrument of Candombe is called tambor (“drum”
in Spanish), of which there are three different sizes: chico
(small), repique (medium) and piano (big). Each type has
a distinctive sound (from high to low frequency range) and
its own specific rhythmic pattern. All three are played with
one hand hitting the skin bare and the other with a stick,
which is also used to hit the shell when playing the clave
pattern. The minimal ensemble of drums (cuerda de tam-
bores) must have at least one of each of the three drums;
during a llamada de tambores it usually consists of around
20 to 60 drums. While marching, the players walk for-
ward with short steps synchronized with the beat or tactus;
this movement, while not audible, is very important for the
embodiment of the rhythm. Figure 1 shows in the first row,
from the front backwards, a repique, a chico and a piano.

2.2 Rhythmic patterns and metrical structure

The Candombe rhythm or ritmo de llamada results from
the interaction between the patterns of the three drums. An
additional important pattern is the clave, played by all the
drums as an introduction to and preparation for the rhythm
(see Figure 2 1 ).

The pattern of the chico drum is virtually immutable,
and establishes the lowest level of the metrical structure

1 Lower and upper line represent hand and stick strokes respectively.

chico

clave

repique

piano

Figure 2. Interaction of main Candombe patterns, and the
three levels of the resulting metric structure. Repique and
piano patterns are shown in a simplified basic form.

(tatum). The period of the pattern is four tatums, conform-
ing the beat or tactus level in the range of about 110 to 150
beats per minute (BPM). The interaction of chico and clave
helps to establish the location of the beat within the chico
pattern (otherwise very difficult to perceive), and defines a
higher metric level of four beats (sixteen tatums).

The resulting metrical structure is a very common one:
a four-beat measure with a regular subdivision in 16 tatums.
However, two characteristic traits link the rhythmic con-
figuration of Candombe with the Afro-Atlantic music tra-
ditions, differentiating it from usual tonal rhythms: 1) the
pattern defining the pulse does not articulate the tatum that
falls on the beat, and has instead a strong accent on the
second; 2) the clave divides the 16-tatum cycle irregularly
(3+3+4+2+4), with only two of its five strokes coinciding
with the beat. This makes the Candombe rhythm difficult
to decode for both listeners not familiar with it and generic
beat-tracking algorithms (see Table 1). The strong phe-
nomenological accents displaced with respect to the metric
structure add to the difficulty.

The repique is the drum with the greatest degree of free-
dom. During the llamada it alternates between the clave
pattern and characteristically syncopated phrases. Figure 2
shows its primary pattern, usually varied and improvised
upon to generate phrases of high rhythmic complexity [12].
The piano drum has two functions: playing the base rhythm
(piano base), and occasional more complex figurations akin
to the repique phrases (piano repicado). The pattern in Fig-
ure 2 is a highly abstracted simplification of the piano base.
It can be seen that it is essentially congruent with the clave
pattern, and when correctly decoded it permits the infer-
ence of the whole metric structure. In real performances,
however, much more complex and varied versions of this
pattern are played. It has been shown [21] that the anal-
ysis of piano patterns may elicit the identity of different
neighborhoods (barrios) 2 and individual players.

3. RHYTHMIC PATTERN MATCHING

In this section, a rhythmic/metric analysis algorithm that
matches a given rhythmic accentuation pattern to an audio
signal is described. It tries to find the time of occurrence

2 The three more important traditional styles are Cuareim (or barrio
Sur), Ansina (or barrio Palermo) and Gaboto (or barrio Cordón).
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of each tatum knowing its expected accentuation inside the
pattern, thus being able to track not only the beat but also
other metrical information. Initially, a tempo estimation
algorithm is employed to obtain the beat period (tempo),
assumed to be approximately stable throughout the signal.
Then, the main algorithm is used to find the phase of the
accentuation pattern within the observed signal.

3.1 Audio feature extraction

For audio feature extraction, this work adopts a typical ap-
proach based on the Spectral Flux. First, the Short-Time
Fourier Transform of the signal is computed and mapped to
the MEL scale for sequential windows of 20 ms duration in
hops of 10 ms. The resulting sequences are differentiated
(via first-order difference) and half-wave rectified.

For tempo estimation, the feature values are summed
along all MEL sub-bands, in order to take into account
events from any frequency range.

Since its pattern is the most informative on both tactus
beat and downbeat locations, the rhythmic pattern tracking
is tailored towards the piano (i.e. the lowest) drum. There-
fore, the accentuation feature used for pattern matching is
obtained by summing the Spectral Flux along the lowest
MEL sub-bands (up to around 200 Hz) only. This function
is normalized by the 8-norm of a vector containing its val-
ues along ±2 estimated tatum periods around the current
frame. The resulting feature value is expected to be close
to one if a pulse has been articulated and close to zero oth-
erwise. In addition, it also carries some information on the
type of articulation. For instance, an accented stroke pro-
duces a higher feature value compared to a muffled one,
since in the former case the spectral change is more abrupt.

3.2 Tempo Estimation

For tempo estimation, this work adopts a straightforward
procedure based on locating the maximum of a suitably
defined similarity function. As proposed in [20], the ba-
sic function is the product between the auto-correlation
function and the Discrete Fourier Transform of the features
computed for the whole signal. The result is weighted by
the function described in [17]. The period associated with
the largest value in this weighted similarity function is se-
lected as the tempo of the signal. After the tempo is ob-
tained, the tatum period used for pattern tracking can be
computed just by dividing the beat period by 4. This tatum
period is then used to define the variables in the pattern
tracking algorithm as described in the next sections.

3.3 Variables definition

In order to perform its task, the algorithm employs two dis-
crete random variables. The first one, called tatum coun-
ter, ck, counts how many frames have passed since the last
tatum has been observed at frame k. Assuming an esti-
mated tatum period of ⌧ frames, then ck 2 {0, 1, . . . , ⌧ �
1 + �c}, where �c is a parameter that allows for possible
timing inaccuracies in the tatum. The second, called pat-
tern index, ak, indicates the position inside a given rhyth-

mic pattern at frame k in the range {0, 1, . . . , M � 1},
where M is the length of the rhythmic pattern in tatums.
The rhythmic pattern will be expected to define a series of
accents or lacks of accent in the tatums. Time evolution of
these two variables will be described in the next section,
where it is assumed that the sampling rate of the feature
(typically less than 100 Hz) is much lower than that of the
original signal (usually 44.1 kHz). The model describes
the accentuation feature extracted at frame k as a random
variable, yk, with actual observed (extracted) value yk.

3.4 State Transition

In this section, the probabilities of each value for the two
random variables at frame k given past frames are described.
A first-order Markov model will be assumed for the joint
distribution of the random variables, i.e., the probability of
each possible value of a random variable at frame k de-
pends only on the values assumed by the variables at the
previous frame k � 1. Using this assumption, the two ran-
dom variables will constitute a Hidden Markov Model [18].

The tatum counter variable, as previously mentioned,
counts how many frames have passed since the last tatum.
The state ck = 0 is considered the “tatum state” and in-
dicates that a tatum has occurred at frame k. This random
variable is closely related to the phase state proposed in [5]
for beat tracking. Only two possible transitions from frame
k � 1 to frame k are allowed: a transition to the “tatum
state” or an increment in the variable. The transition to the
“tatum state” depends on both the past value of the vari-
able and the (known) tatum period. The closer the value
of the variable is to the tatum period, the more probable
is the transition to the “tatum state.” Mathematically, it is
possible to write

p
ck

(ck|ck�1)=

8

>

<

>

:

h[ck�1 � ⌧ ], if ck =0

1 � h[ck�1 � ⌧ ], if ck =ck�1 + 1

0, otherwise,
(1)

where h[.] is a tapering window with h[n] = 0 for |n| > �c

that models possible timing inaccuracies on the tatum, and
P

n h[n] = 1. Currently, a normalized Hann window is
employed to penalize farther values. The value �c = 2
was set for the reported experiments, indicating that inac-
curacies of up to 50 ms are tolerated by the algorithm.

Since the accentuation pattern is defined in terms of the
tatum, its time evolution will be conditioned by the pattern
evolution. Assuming that the pattern indicates the expected
accentuation of the next tatum, the variable should only
change value when a “tatum state” has been observed, in-
dicating that a different accentuation should be employed
by the observation model (described in the next section).
Hence, mathematically

p
ak

(ak|ck�1, ak�1) =
8

>

<

>

:

1, if (ak = ak�1 � 1) ^ (ck�1 = 0)

1, if (ak = ak�1) ^ (ck�1 6= 0)

0, otherwise,
(2)
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where ^ is the logical AND, � denotes a modulo-M sum-
mation, and M is the length of the accentuation pattern. As
can be gathered, given the previous tatum counter value,
the pattern index becomes deterministic, with its next value
completely determined by its value at the previous frame
and the value of the tatum counter. The transitions for this
variable are inspired on the ones used in the family of al-
gorithms based on [24] (i.e. [2,10,14]), except for defining
the pattern in terms of tatums instead of an arbitrary unit.

3.5 Observation Model

This section describes the likelihood of ck and ak given an
observed accentuation yk in the signal. The main idea is to
measure the difference between the expected accentuation
(provided by the rhythmic pattern) and the observed one.
The larger the difference, the less probable the observation.

If the accentuation pattern is a vector A 2 RM⇥1 con-
taining the expected feature values, then at frame k the
likelihood for ck = 0 (“tatum state”) can be defined as

p
yk

(yk|ck, ak) = N�t
(yk � Aak

), (3)

where N�t(.) is a Gaussian function with zero mean and
variance �2

t used to model possible deviations between ex-
pected and observed accents. For ck 6= 0, the likelihood is
given by:

p
yk

(yk|ck, ak) = N�d
(yk), (4)

where N�d
is a zero-mean Gaussian with variance equal to

�2
d. Hence, the closer to zero the feature, the more proba-

ble the observation. This is similar to the non-beat model
adopted in [5], and is not found in [14, 24].

In the reported experiments, �t = �d = 0.5, thus allow-
ing for a reasonable overlap between expected and actual
observed values.

3.6 Inference

A summary of the proposed model for rhythmic pattern
tracking can be viewed in Figure 3, where the statistical
dependencies among the variables are explicited. Differ-
ent inference strategies can be employed to find the most
probable pattern index and tatum counter values given the
observed accentuation [18]. In this work, the well-known
Viterbi algorithm [18, 24] is employed to find the most
probable path among all possible combinations of values
of each random variable given the observed features yk.

ak�1

yk�1

ak

yk

ck�1 ck

Figure 3. Graphical representation of the statistical depen-
dency between random variables and observations.

At last, a uniform prior is chosen for c0 and a0 indi-
cating that the counter and the pattern can start with any
possible value in the first frame.

4. EXPERIMENTS AND RESULTS

A set of experiments was devised to assess the performance
of the proposed rhythmic pattern tracking system with re-
spect to the problems of estimating the rate and phase of
beats and downbeats, using a database of manually labeled
Candombe recordings. Four state-of-the-art beat-tracking
algorithms [6, 7, 13, 19] were included in the experiments
in order to evaluate how challenging the rhythm at hand is
for typical general-purpose approaches.

Two different strategies are explored: the rhythmic pat-
terns to follow are either informed to the algorithm based
on a priori musical knowledge about the rhythm, or learned
from the labeled database itself.

4.1 Dataset

A dataset of Candombe recordings, totaling over 2 hours
of audio, was compiled and annotated for this work and it
is now released to the research community. 3 It comprises
35 complete performances by renowned players, in groups
of three to five drums. Recording sessions were conducted
in studio, in the context of musicological research over the
past two decades. A total of 26 tambor players took part,
belonging to different generations and representing all the
important traditional Candombe styles. The audio files are
stereo with a sampling rate of 44.1 kHz and 16-bit preci-
sion. The location of beats and downbeats was annotated
by an expert, adding to more than 4700 downbeats.

4.2 Performance measures

Since tempo estimation is only an initialization step of the
rhythmic pattern tracking task, whose overall performance
will be examined in detail, it suffices to mention that the
estimated tempo was within the interval spanned by the an-
notated beat periods along each of the files in the database,
thus providing a suitable value for the respective variable.

Among the several objective evaluation measures avail-
able for audio beat tracking [4] there is currently no con-
sensus over which to use, and multiple accuracies are usu-
ally reported [2, 3]. In a recent pilot study, the highest cor-
relation between human judgements of beat tracking per-
formance and objective accuracy scores was attained for
CMLt and Information Gain [3].

In this work CMLt, AMLt and F-measure were adopted,
as their properties are well understood and were consid-
ered the most suitable for the current experiments. The
non-inclusion of Information Gain was based on the ob-
servation that it yielded high score values for estimated
beat sequences that were definitely not valid. Specifically,
in several instances when the beat rate (or a multiple of
it) was precisely estimated, even if the beat phase was re-
peatedly misidentified, the Information Gain attained high
values while other measures such as CMLt or F-measure
were coherently small. In the following, a brief description

3 Available from http://www.eumus.edu.uy/candombe/
datasets/ISMIR2015/.
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of the adopted metrics 4 is provided (see [4] for details),
along with the values selected for their parameters.

The CMLt measure (Correct Metrical Level, continu-
ity not required) considers a beat correctly estimated if
its time-difference to the annotated beat is below a small
threshold, and if the same holds for the previous estimated
beat. Besides, the inter-beat-interval is required to be close
enough to the inter-annotation-interval using another thresh-
old. The total number of correctly detected beats is then
divided by the number of annotated beats and expressed
as a percentage (0-100 %). Both thresholds are usually set
to 17.5 % of the inter-annotated-interval, which was also
the value adopted in this work. The AMLt measure (Al-
lowed Metrical Levels, continuity not required) is the same
as CMLt but does not take into account errors in the metri-
cal level and phase errors of half the period.

The F-measure (Fmea) is the harmonic mean of preci-
sion and recall of correctly detected beats, where preci-
sion stands for the ratio between correctly detected beats
and the total number of estimated beats, while recall de-
notes the ratio between correctly detected beats and the to-
tal number of annotated beats. A beat is considered cor-
rectly detected if its time-difference to the annotation is
within ±70 ms; this tolerance was kept in this work.

Only CMLt and F-measure were used for assessing the
downbeat, since the loosening of metrical level and phase
constraints in AMLt was considered inappropriate.

4.3 Experiments with informed rhythmic patterns

In the first type of experiment, the pattern to track A is in-
formed to the algorithm based on musical knowledge about
the rhythm, without any training or tuning to data. On one
hand, this has a practical motivation: even when no labeled
data is available one could take advantage of the technique.
On the other hand, it gives a framework in which musical
models can be empirically tested. In short, an informed
rhythmic pattern based on musical knowledge is nothing
but a theoretical abstraction, and this type of experiment
could provide some evidence of its validity.

To that end, based on the different ways the piano pat-
tern is notated by musicology experts, a straightforward
approach was adopted. Firstly, the piano pattern as in-
troduced in Figure 2 (usually regarded as the piano in its
minimal form) was considered. A binary pattern A was as-
sembled by setting a value of 1 for those tatums which are
expected to be articulated and 0 otherwise. Then, a more
complex pattern was considered by adding two of the most
relevant articulated tatums which were missing, namely the
6th and 15th, and also building the corresponding binary
pattern. Hence, the binary informed patterns proposed are
Pattern 1: A = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]
Pattern 2: A = [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0].

This is certainly an oversimplification of the real rhyth-
mic patterns, since it does not take into account the ac-
cented and muffled strokes that are an essential trait of a

4 Computed with standard settings using code at https://code.
soundsoftware.ac.uk/projects/beat-evaluation/.

piano performance. It would be possible to encompass dy-
namic variations into the informed pattern by considering
distinct quantized values of the feature for different type
of strokes. However, the binary patterns were favoured for
the sake of simplicity and as a proof of concept.

Table 1 5 compares 4 general-purpose beat-tracking al-
gorithms with the proposed algorithm using the binary in-
formed patterns, and also (for conciseness) the experiments
discussed in the next section. Results are averaged over the
whole database and weighted by the number of beats and
downbeats of each audio file. Although the beat rate (or a
multiple) is sometimes precisely estimated by the general-
purpose beat-tracking algorithms, the correct metrical level
and/or the phase of the beat is usually misidentified.

BEAT DOWNBEAT

CMLt AMLt Fmea CMLt Fmea

General-purpose
Ellis [7] 44.2 63.0 43.8 – –
Dixon [6] 13.9 14.9 22.7 – –
IBT [19] 9.1 27.6 16.7 – –
Klapuri [13] 28.8 35.5 29.3 36.6 13.2

Informed patterns – Section 4.3
Pattern 1 80.2 80.5 81.3 84.7 79.1
Pattern 2 79.0 81.0 79.8 81.2 77.5

Learned patterns – Section 4.4 (leave-one-out)
Median 79.9 79.9 80.8 82.4 76.9
K-means 2 81.7 81.7 82.6 84.4 79.3
K-means 5 82.5 82.5 83.6 85.2 80.6

Table 1. Performance of the different algorithms considered.

4.4 Experiments with learned rhythmic patterns

The labeled database allows the study of the rhythmic pat-
terns actually present in real performances. There are dif-
ferent possible approaches to extract a single rhythmic pat-
tern to track from the annotated data. For each tatum-grid
position in the bar-length pattern, all the feature values in
the dataset can be collected, and their distribution can be
modeled, e.g. by a GMM as in [14]. The distribution of
feature values in the low-frequency range will be domi-
nated by the base patterns of the piano drum, albeit there
will be a considerable amount of repicado patterns [21]. In
order to cope with that, a simple model was chosen: the
median of feature values for each tatum beat, which is less
influenced by outliers than the mean.

The problem with the median pattern is that it models
different beat positions independently. A better suited ap-
proach is to group the patterns based on their similarity
into a given number of clusters, and select the centroid of
the majority cluster as a good prototype of the base pat-
tern. This was applied in [21] to identify base patterns

5 Additional details can be found in http://www.eumus.edu.
uy/candombe/papers/ISMIR2015/.
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of the piano drum in a performance, and similarly in [10]
to learn rhythmic patterns from annotated data to adapt
a beat-tracking model to specific music styles. Figure 4
shows the patterns learned from the whole database, us-
ing the median and the centroid of the majority cluster ob-
tained with K-means for 2 and 5 clusters. It is remark-
able that the differently learned patterns are quite similar,
exhibiting the syncopated 4th tatum beat as the most ac-
cented one. The locations of articulated beats for the in-
formed patterns of the previous section are also depicted,
and are consistent with the learned patterns. The K-means
approach turned out to be little sensitive to the number of
clusters, yielding similar patterns from 1 to 6.

Figure 4. Comparison of the different patterns considered.
(Median and K-means learned from the whole database.)

For testing the performance of the learning approach a
leave-one-out scheme was implemented and the results are
detailed in Table 1. Not surprisingly, performance is al-
most the same for the different rhythmic patterns. Consid-
ering different feature values instead of binary patterns did
not yield any notable performance increase.

A detailed inspection of the performance attained for
each recording in the database, as depicted in Figure 5,
shows there is still some room for improvement, given that
about half-a-dozen files are definitely mistracked. This
may indicate that the pattern A to track simply does not
properly match the given performance. To check this hy-
pothesis, a K-means (K=2) clustering was carried out only
with the candidate patterns found within each target record-
ing, whose tracking was then performed using the centroid
of the majority cluster as A. Table 2 shows the new results
obtained for the files with lower performance (CMLt<50%)
in the dataset. Except for the first one, performance was
(sometimes notably) improved when the informed rhyth-
mic pattern is the one that better matches the recording.
Therefore, modeling several rhythmic patterns as in [10]
can potentially improve the current results.

Figure 5. Leave-one-out performance for each recording
of the database using the K-means pattern with K=2.

BEAT DOWNBEAT

Recording # CMLt Fmea CMLt Fmea

15 34.1 32.8 32.7 7.2
16 95.6 98.0 96.3 97.1
26 40.2 36.9 42.9 22.2
31 71.3 69.9 78.3 67.8
32 55.7 54.1 59.6 44.7
34 60.9 60.0 62.7 51.7

Table 2. Scores attained when tracking the centroid of the
majority cluster for each of the low performing files.

5. DISCUSSION AND FUTURE WORK

This paper tackled the problem of automatic rhythmic anal-
ysis of Candombe audio signals. A study of the rhythmic
structure of Candombe was described, along with a pat-
tern tracking algorithm that could deal with the particular
characteristics of this rhythm. From the rhythm descrip-
tion and the presented experiments, it becomes clear that
typical assumptions of general-purpose beat-tracking algo-
rithms (such as strong events at beat times) do not hold,
which hinders their performance. In order to overcome
this problem, the proposed algorithm tracks a rhythmic pat-
tern that informs when a beat with or without accentuation
is expected to occur, which eventually can determine the
complete metric structure. Indeed, experiments employing
both rhythmic patterns based on musical knowledge and
others learned from a labeled database, showed that the
proposed algorithm can estimate the beat and downbeat
positions for Candombe whereas traditional methods fail
at these tasks. The attained CMLt score of about 80 % for
beat tracking is approximately what one can expect from
a state-of-the-art algorithm in a standard dataset [2,9], and
what is reported in [10] for a Bayesian approach adapted to
a culturally diverse music corpus. The present work gives
additional evidence of the generalizability of the Bayesian
approach to complex rhythms from different music tra-
ditions. The analysis of examples with low performance
scores indicates that tracking several rhythmic patterns si-
multaneously, as proposed in [10], is a promising alterna-
tive for future work. Surely taking into account the timbre
characteristics of different drums can be profitable.

Along with the annotated database employed, a soft-
ware implementation of the proposal is being released with
the publication of this paper to foster reproducible research
(the first available implementation of the Bayesian approach
for beat tracking, to the best of our knowledge). 6
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